Q01. Age#
Question#
What is your age?
Choices#
10s (less than 19 yeas old)
20s
30s
40s
50s
60s
70s
80s
90s+ (more than 90 years old)
Responses#
import pandas as pd
import hvplot.pandas
import titanite as ti
print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:03:20.208 | INFO | titanite.preprocess:categorical_data:135 - Categorize
names = ["q01"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
20代、30代の回答が多かった
Breakdowns#
q01
と他の質問の内訳を確認した
names = ["q01", "q02"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
30代は、女性の回答比率が高め
names = ["q01", "q03_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q05"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
20代は博士課程
30代はポスドク
40代以上はパーマネント
names = ["q01", "q06"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q07"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q08"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q09"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q12_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q12_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q12_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q01", "q12_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)