Q03. Workplace

Q03. Workplace#

Question#

Which geographical region are you currently working or attending school/university in?

Choices#

  1. Asia / Japan

  2. Asia / Eastern Asia

  3. Asia / South-Eastern Asia

  4. Asia / Southern Asia

  5. Asia / Central Asia

  6. Asia / Western Asia

  7. Africa / Northern Africa

  8. Africa / Western Africa

  9. Africa / Middle Africa

  10. Africa / Eastern Africa

  11. Africa / Southern Africa

  12. Europe / North Europe

  13. Europe / West Europe

  14. Europe / Central Europe

  15. Europe / East Europe

  16. Europe / South Europe

  17. America / North America

  18. America / Central America

  19. America / South America

  20. Oceania

  21. Prefer not to answer

These choices are based on the United Nations Geoscheme.

Responses#

import pandas as pd
import hvplot.pandas
import titanite as ti

print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-06-02 12:25:23.381 | INFO     | titanite.preprocess:categorical_data:135 - Categorize
names = ["q03"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q03_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q03_subregional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Breakdowns#

names = ["q03_subregional", "q02"]
bd = ti.analysis.breakdowns(data, names, width=2000)
bd.graph.cols(1)
  • 日本は男性の回答者がおおい

names = ["q03_regional", "q04_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • 母国で働いているひとが多い

names = ["q03_subregional", "q04_regional"]
bd = ti.analysis.breakdowns(data, names)
# bd.graph.cols(1)
names = ["q03_subregional", "q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)