Q03. Workplace#
Question#
Which geographical region are you currently working or attending school/university in?
Choices#
Asia / Japan
Asia / Eastern Asia
Asia / South-Eastern Asia
Asia / Southern Asia
Asia / Central Asia
Asia / Western Asia
Africa / Northern Africa
Africa / Western Africa
Africa / Middle Africa
Africa / Eastern Africa
Africa / Southern Africa
Europe / North Europe
Europe / West Europe
Europe / Central Europe
Europe / East Europe
Europe / South Europe
America / North America
America / Central America
America / South America
Oceania
Prefer not to answer
These choices are based on the United Nations Geoscheme.
Responses#
import pandas as pd
import hvplot.pandas
import titanite as ti
print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-06-02 12:25:23.381 | INFO | titanite.preprocess:categorical_data:135 - Categorize
names = ["q03"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q03_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q03_subregional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
Breakdowns#
names = ["q03_subregional", "q02"]
bd = ti.analysis.breakdowns(data, names, width=2000)
bd.graph.cols(1)
日本は男性の回答者がおおい
names = ["q03_regional", "q04_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
母国で働いているひとが多い
names = ["q03_subregional", "q04_regional"]
bd = ti.analysis.breakdowns(data, names)
# bd.graph.cols(1)
names = ["q03_subregional", "q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)