Q04. Hometown#
Question#
Which geographical region do you most strongly associate with?
Choices#
Asia / Japan
Asia / Eastern Asia
Asia / South-Eastern Asia
Asia / Southern Asia
Asia / Central Asia
Asia / Western Asia
Africa / Northern Africa
Africa / Western Africa
Africa / Middle Africa
Africa / Eastern Africa
Africa / Southern Africa
Europe / North Europe
Europe / West Europe
Europe / Central Europe
Europe / East Europe
Europe / South Europe
America / North America
America / Central America
America / South America
Oceania
Prefer not to answer
These choices are based on the United Nations Geoscheme.
Responses#
import pandas as pd
import hvplot.pandas
import titanite as ti
print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:03:43.265 | INFO | titanite.preprocess:categorical_data:135 - Categorize
data["q04"].value_counts().hvplot.bar(
title="Q04: Hometown",
xlabel="Hometown",
ylabel="Entries",
width=600,
height=600,
rot=90,
)
data["q04_regional"].value_counts().hvplot.bar(
title="Q04: Hometown",
xlabel="Hometown (Regional)",
ylabel="Entries",
width=600,
height=600,
rot=90,
)
data["q04_subregional"].value_counts().hvplot.bar(
title="Q04: Hometown",
xlabel="Hometown (Sub-Regional)",
ylabel="Entries",
width=600,
height=600,
rot=90,
)