Q05. Job Title#
Question#
What is your job title?
Choices#
Undergraduate
Master
Doctrate
Postdoc
Fixed-term staff
Permanent staff
Prefer not to answer
Responses#
import pandas as pd
import hvplot.pandas
import titanite as ti
print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:03:47.935 | INFO | titanite.preprocess:categorical_data:135 - Categorize
names = ["q05"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
Breakdowns#
names = ["q05", "q02"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q03_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q06"]
bd = ti.analysis.breakdowns(data, names, width=2000)
bd.graph.cols(1)
names = ["q05", "q07"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q09"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
職種別の
Yes
とNo
の比率(Yes/No
)を考えるとFixed-term
(任期付き)が最小になる任期付のポジションに地域差はない → どの地域も大変ということが感じられる
names = ["q05", "q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
Gender Balance#
Q12. Group
Q17. Individual
names = ["q05", "q12_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
グループの取り組みは、
Good
が多い、ついで、Poor
Fixed-term
の方は、Good/Poor
の比率が、他の職種より大きい
個人的にも、Gender Balanceの取り組みに
Agree
の方がおおいPermanent Staff
の方はDisagree
の回答数が相対的におおい?
Diversity#
names = ["q05", "q12_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
Equity#
names = ["q05", "q12_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
Inclusion#
names = ["q05", "q12_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
DEIの取り組みに関する個人の印象を聞いた
Gender Balance / Diversity は Disagree と表明する人が少しいる
Equity / Inclusion はDisagree があまりいない?