Q05. Job Title#

Question#

What is your job title?

Choices#

  1. Undergraduate

  2. Master

  3. Doctrate

  4. Postdoc

  5. Fixed-term staff

  6. Permanent staff

  7. Prefer not to answer

Responses#

import pandas as pd
import hvplot.pandas
import titanite as ti

print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:03:47.935 | INFO     | titanite.preprocess:categorical_data:135 - Categorize
names = ["q05"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Breakdowns#

names = ["q05", "q02"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q03_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q06"]
bd = ti.analysis.breakdowns(data, names, width=2000)
bd.graph.cols(1)
names = ["q05", "q07"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q09"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • 職種別のYesNoの比率(Yes/No)を考えるとFixed-term(任期付き)が最小になる

  • 任期付のポジションに地域差はない → どの地域も大変ということが感じられる

names = ["q05", "q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Gender Balance#

  • Q12. Group

  • Q17. Individual

names = ["q05", "q12_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • グループの取り組みは、Goodが多い、ついで、Poor

    • Fixed-termの方は、Good/Poorの比率が、他の職種より大きい

  • 個人的にも、Gender Balanceの取り組みにAgreeの方がおおい

    • Permanent Staffの方はDisagreeの回答数が相対的におおい?

Diversity#

names = ["q05", "q12_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Equity#

names = ["q05", "q12_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Inclusion#

names = ["q05", "q12_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q05", "q17_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • DEIの取り組みに関する個人の印象を聞いた

    • Gender Balance / Diversity は Disagree と表明する人が少しいる

    • Equity / Inclusion はDisagree があまりいない?