Q11. Diversity Session Signup

Q11. Diversity Session Signup#

Question#

Did you already sign up for the diversity session in ICRC2023?

Choices#

  1. Yes

  2. No

  3. Prefer not to answer

Responses#

import pandas as pd
import hvplot.pandas
import titanite as ti

print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:04:15.614 | INFO     | titanite.preprocess:categorical_data:135 - Categorize
names = ["q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

事前アンケートに協力してくれる = Diversityの取り組みへの関心度が高い = Diversity Sessionに参加する

と想定していた。

Diversity Sessionに参加しない多くの方が回答してくれた。

Breakdowns#

names = ["q11", "q02"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q03_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q05"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q06"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Gender Balance#

  • Q11. singupしたかどうかと、Q17(個人の賛否)は関係がありそう

names = ["q11", "q12_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q17_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Diversity#

names = ["q11", "q12_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q17_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Equity#

names = ["q11", "q12_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q17_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)

Inclusion#

names = ["q11", "q12_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q11", "q17_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)