Q12. Group Initiatives on DE&I#
Question#
What do you think about the initiatives on DE&I of your group?
Choices#
Very Good |
Good |
Poor |
Very Poor |
No interest |
Prefer no to answer |
|
---|---|---|---|---|---|---|
Gender Balance |
||||||
Diversity |
||||||
Equity |
||||||
Inclusion |
Note
きちんとリッカートスケールで聞いた方がよかったかもしれない。
Responses#
import pandas as pd
import hvplot.pandas
import titanite as ti
print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:04:21.985 | INFO | titanite.preprocess:categorical_data:135 - Categorize
names = ["q12_genderbalance"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q12_diversity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q12_equity"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q12_inclusion"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
Breakdowns#
copied = data.copy()
# copied.info()
x = "q12_genderbalance"
y = "q17_genderbalance"
xlabel = ti.analysis.TITLES.get(x)
ylabel = ti.analysis.TITLES.get(y)
pd.crosstab(data[x], data[y]).T.hvplot.heatmap(
width=600,
height=600,
rot=90,
xlabel=xlabel,
ylabel=ylabel,
)
x = "q12_diversity"
y = "q17_diversity"
xlabel = ti.analysis.TITLES.get(x)
ylabel = ti.analysis.TITLES.get(y)
pd.crosstab(data[x], data[y]).T.hvplot.heatmap(
width=600,
height=600,
rot=90,
xlabel=xlabel,
ylabel=ylabel,
)
x = "q12_equity"
y = "q17_equity"
xlabel = ti.analysis.TITLES.get(x)
ylabel = ti.analysis.TITLES.get(y)
pd.crosstab(data[x], data[y]).T.hvplot.heatmap(
width=600,
height=600,
rot=90,
xlabel=xlabel,
ylabel=ylabel,
)
x = "q12_inclusion"
y = "q17_inclusion"
xlabel = ti.analysis.TITLES.get(x)
ylabel = ti.analysis.TITLES.get(y)
pd.crosstab(data[x], data[y]).T.hvplot.heatmap(
width=600,
height=600,
rot=90,
xlabel=xlabel,
ylabel=ylabel,
)