Q13. Female Ratio#
Question#
What is the percentage of female researchers in your group?
Choices#
The answer is expected in integer between 0 to 100. Fill “-1” if you prefer not to answer.
Responses#
import pandas as pd
import hvplot.pandas
import titanite as ti
print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.2
Titanite: 0.5.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2024-08-24 23:32:19.433 | INFO | titanite.preprocess:categorical_data:125 - Categorize
data.hvplot.hist(
"q13",
bins=105,
bin_range=(-5, 100),
title="Q13. Female Ratio in Group",
xlabel="Percentage",
ylabel="Entries",
width=600,
height=400,
grid=True,
)
q13
を5%刻みのビンにくぎりたい
grouped = pd.cut(data["q13"], bins=10).value_counts(sort=False).reset_index()
grouped
# grouped.hvplot.scatter(x="q13", y="count")
# grouped.hvplot.bar(x="q13_binned", y="count", grid=True)
q13 | count | |
---|---|---|
0 | (-1.101, 9.1] | 42 |
1 | (9.1, 19.2] | 44 |
2 | (19.2, 29.3] | 82 |
3 | (29.3, 39.4] | 58 |
4 | (39.4, 49.5] | 27 |
5 | (49.5, 59.6] | 26 |
6 | (59.6, 69.7] | 9 |
7 | (69.7, 79.8] | 4 |
8 | (79.8, 89.9] | 2 |
9 | (89.9, 100.0] | 1 |