Q19. Science Interest

Q19. Science Interest#

Question#

When did you first become interested in science ?

Choices#

  1. Pre school

  2. Elementary school

  3. Junior High school

  4. High school

  5. University

  6. Others

  7. Prefer not to answer

Responses#

import pandas as pd
import hvplot.pandas
import titanite as ti

print(f"Pandas: {pd.__version__}")
print(f"Titanite: {ti.__version__}")
%opts magic unavailable (pyparsing cannot be imported)
%compositor magic unavailable (pyparsing cannot be imported)
Pandas: 2.2.3
Titanite: 0.6.0
f_cfg = "../../../sandbox/config.toml"
f_csv = "../../../data/test_data/prepared_data.csv"
d = ti.Data(read_from=f_csv, load_from=f_cfg)
config = d.config()
data = d.read()
2025-05-12 10:04:45.200 | INFO     | titanite.preprocess:categorical_data:135 - Categorize
names = ["q19"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • 小学校で科学に興味を持つ人が多いようだ

  • 中学校では少し減って、高校でまた増えている

  • 大学に入る時点で、科学に興味を持ってもらう必要がありそう

Breakdowns#

names = ["q19", "q02"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • 男性はElementary shoolで興味を持った割合がおおい

  • 女性はElementary / Junior High / High でフラットな印象

names = ["q19", "q04_regional"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • Hometown別に集計した(WorkplaceよりHometownで確認するほうが適切なはず)

  • Asia / AmericaElementary shoolで科学に興味をもった割合が多い

  • Europeはフラット

  • 地域差がある?

names = ["q19", "q05"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • Elementary shoolで興味をもった割合が(やはり)おおい

  • Permanent Staff / DoctrateHigh schoolで興味をもった割合も大きい

names = ["q19", "q06"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
  • NU / GA 分野は Elementary schoolで興味を持った割合がおおい

names = ["q19", "q07"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q19", "q08"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q19", "q09"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)
names = ["q19", "q11"]
bd = ti.analysis.breakdowns(data, names)
bd.graph.cols(1)